skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Morrison, Philip J."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. We propose a systematic procedure called the Clebsch canonization for obtaining a canonical Hamiltonian system that is related to a given Lie–Poisson equation via a momentum map. We describe both coordinate and geometric versions of the procedure, the latter apparently for the first time. We also find another momentum map so that the pair of momentum maps constitute a dual pair under a certain condition. The dual pair gives a concrete realization of what is commonly referred to as collectivization of Lie–Poisson systems. It also implies that solving the canonized system by symplectic Runge–Kutta methods yields so-called collective Lie–Poisson integrators that preserve the coadjoint orbits and hence the Casimirs exactly. We give a couple of examples, including the Kida vortex and the heavy top on a movable base with controls, which are Lie–Poisson systems on \begin{document}$$ \mathfrak{so}(2,1)^{*} $$\end{document} and \begin{document}$$ (\mathfrak{se}(3) \ltimes \mathbb{R}^{3})^{*} $$\end{document}, respectively. 
    more » « less